圆梦高教社杯一等奖,分享一些学习心得

  • 2014年“高教社杯”全国大学生数学建模竞赛一等奖
周丰愉·清华大学
2014-11-19
阅读数2877

Part_1,新手上路

一、数学模型的定义 

现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 

数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。

二、建立数学模型的方法和步骤 

1. 模型准备 

要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 

2. 模型假设 

根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 

3. 模型构成 

根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 

4. 模型求解 

可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 

5. 模型分析 

对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。

三、数模竞赛出题的指导思想 

传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一编“论文”。由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。

四、竞赛中的常见题型 

赛题题型结构形式有三个基本组成部分: 

1. 实际问题背景 

涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。一般都有一个比较确切的现实问题。 

2. 若干假设条件 

有如下几种情况: 

1)只有过程、规则等定性假设,无具体定量数据; 

2)给出若干实测或统计数据; 

3)给出若干参数或图形; 

4)蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据自己收集或模拟产生数据。

3. 要求回答的问题 

往往有几个问题,而且一般不是唯一答案。一般包含以下两部分: 

1)比较确定性的答案(基本答案);2)更细致或更高层次的讨论结果(往往是讨论最优方案的提法和结果)。

五、提交一篇论文,基本内容和格式是什么? 

提交一篇论文,基本内容和格式大致分三大部分: 

1. 标题、摘要部分 

题目——写出较确切的题目(不能只写A题、B题)。 

摘要——200-300字,包括模型的主要特点、建模方法和主要结果。 

内容较多时最好有个目录。 

2. 中心部分 

1)问题提出,问题分析。 

2)模型建立: 

① 补充假设条件,明确概念,引进参数; 

② 模型形式(可有多个形式的模型); 

③ 模型求解; 

④ 模型性质; 

3)计算方法设计和计算机实现。 

4)结果分析与检验。 

5)讨论——模型的优缺点,改进方向,推广新思想。 

6)参考文献——注意格式。 

3. 附录部分 

计算程序,框图。 

各种求解演算过程,计算中间结果。 

各种图形、表格。

六、参加数学建模竞赛是不是需要学习很多知识? 

没有必要很系统的学很多数学知识,这是时间和精力不允许的。很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。有时候,在论文中可能碰见一些没有学过的知识,怎么办?现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。 

具体说来,大概有以下这三个方面: 

第一方面:数学知识的应用能力 

归结起来大体上有以下几类: 

1)概率与数理统计 

2)统筹与线轴规划 

3)微分方程; 

还有与计算机知识交叉的知识:计算机模拟。 

上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,我曾听到过数模评卷的负责教师范毅说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。 

第二方面:计算机的运用能力 

一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word”,掌握电子表格“Excel”的使用;“Mathematica”软件的使用,最好还具备语言能力。这些知识大部分都是学生自己利用课余时间学习的。 

第三方面:论文的写作能力 

前面已经说过考卷的全文是论文式的,文章的书写有比较严格的格式。要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。评卷的教师们有一个共识,一篇文章用10来分钟阅读仍然没有引起兴趣的话,这一遍文章就很有可能被打入冷宫了。

七、小组中应该如何分工? 

传统的标准答案是——数学,编程,写作。其实分工不用那么明确,但有个前提是大家关系很好。不然的话,很容易产生矛盾。分工太明确了,会让人产生依赖思想,不愿去动脑子。理想的分工是这样的:数学建模竞赛小组中的每一个人,都能胜任其它人的工作,就算小组只剩下她(他)一个人,也照样能够六、参加数学建模竞赛是不是需要学习很多知识? 

没有必要很系统的学很多数学知识,这是时间和精力不允许的。很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。有时候,在论文中可能碰见一些没有学过的知识,怎么办?现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。 

具体说来,大概有以下这三个方面: 

第一方面:数学知识的应用能力 

归结起来大体上有以下几类: 

1)概率与数理统计 

2)统筹与线轴规划 

3)微分方程; 

还有与计算机知识交叉的知识:计算机模拟。 

上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,我曾听到过数模评卷的负责教师范毅说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。 

第二方面:计算机的运用能力 

一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word”,掌握电子表格“Excel”的使用;“Mathematica”软件的使用,最好还具备语言能力。这些知识大部分都是学生自己利用课余时间学习的。 

第三方面:论文的写作能力 

前面已经说过考卷的全文是论文式的,文章的书写有比较严格的格式。要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。评卷的教师们有一个共识,一篇文章用10来分钟阅读仍然没有引起兴趣的话,这一遍文章就很有可能被打入冷宫了。搞定数学建模竞赛。在竞赛中的分工,只是为了提高工作的效率,做出更好的结果。 

具体的建议如下:一定要有一个人脑子比较活,善于思考问题,这个人勉强归于数学方面吧;一定要有一个人会编程序,能够实现一些算法。另外需要有一个论文写的比较好,不过写不好也没关系,多看一看别人的优秀论文,多用几次word,Visio就成了。

-----------------------------------------------------

Part_2论文写作

一、写好数模答卷的重要性 

1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。 

2. 答卷是竞赛活动的成绩结晶的书面形式。 

3. 写好答卷的训练,是科技写作的一种基本训练。

4. 要重视的问题 

1)摘要。包括: 

a. 模型的数学归类(在数学上属于什么类型); 

b. 建模的思想(思路); 

c. 算法思想(求解思路); 

d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……); 

e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。 

f. 注意表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式。务必认真校对。 

2)问题重述。 

3)模型假设。 

根据全国组委会确定的评阅原则,基本假设的合理性很重要。 

a. 根据题目中条件作出假设 

b. 根据题目中要求作出假设 

关键性假设不能缺;假设要切合题意。 

4) 模型的建立。 

a. 基本模型: 

ⅰ)首先要有数学模型:数学公式、方案等; 

ⅱ)基本模型,要求 完整,正确,简明; 

b. 简化模型: 

ⅰ)要明确说明简化思想,依据等; 

ⅱ)简化后模型,尽可能完整给出; 

c. 模型要实用,有效,以解决问题有效为原则。 

数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。 

ⅰ)能用初等方法解决的、就不用高级方法; 

ⅱ)能用简单方法解决的,就不用复杂方法; 

ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 

d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在: 

▲ 建模中,模型本身,简化的好方法、好策略等; 

▲ 模型求解中; 

▲ 结果表示、分析、检验,模型检验; 

▲ 推广部分。

e.在问题分析推导过程中,需要注意的问题: 

ⅰ)分析:中肯、确切; 

ⅱ)术语:专业、内行; 

ⅲ)原理、依据:正确、明确; 

ⅳ)表述:简明,关键步骤要列出; 

ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。 

5)模型求解。 

a. 需要建立数学命题时: 

命题叙述要符合数学命题的表述规范,尽可能论证严密。 

b. 需要说明计算方法或算法的原理、思想、依据、步骤。 

若采用现有软件,说明采用此软件的理由,软件名称。 

c. 计算过程,中间结果可要可不要的,不要列出。 

d. 设法算出合理的数值结果。 

6) 结果分析、检验;模型检验及模型修正;结果表示。 

a. 最终数值结果的正确性或合理性是第一位的; 

b. 对数值结果或模拟结果进行必要的检验; 

结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。 

c. 题目中要求回答的问题,数值结果,结论,须一一列出; 

d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; 

e. 结果表示:要集中,一目了然,直观,便于比较分析。 

▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。 

▲ 求解方案,用图示更好。 

7)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。 

8)模型评价 

优点突出,缺点不回避。 

改变原题要求,重新建模可在此做。 

推广或改进方向时,不要玩弄新数学术语。 

9)参考文献 

10)附录 

详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。 

检查答卷的主要三点,把三关: 

a. 模型的正确性、合理性、创新性 

b. 结果的正确性、合理性 

c. 文字表述清晰,分析精辟,摘要精彩

三、关于写答卷前的思考和工作规划 

答卷需要回答哪几个问题――建模需要解决哪几个问题; 

问题以怎样的方式回答――结果以怎样的形式表示; 

每个问题要列出哪些关键数据――建模要计算哪些关键数据; 

每个量,列出一组还是多组数――要计算一组还是多组数。

四、答卷要求的原理 

1. 准确――科学性; 

2. 条理――逻辑性; 

3. 简洁――数学美; 

4. 创新――研究、应用目标之一,人才培养需要; 

5. 实用――建模、实际问题要求。

五、建模理念 

1. 应用意识 

要解决实际问题,结果、结论要符合实际; 

模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 

2. 数学建模 

用数学方法解决问题,要有数学模型; 

问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。 

3. 创新意识 

建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。

-----------------------------------------------------

Part_3常用资料

一、数学建模竞赛中应当掌握的十类算法 

1.蒙特卡罗算法 

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。 

2.数据拟合、参数估计、插值等数据处理算法 

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。 

3.线性规划、整数规划、多元规划、二次规划等规划类问题 

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现。 

4.图论算法 

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 

5.动态规划、回溯搜索、分治算法、分支定界等计算机算法 

这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。 

6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 

这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 

7.网格算法和穷举法 

网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 

8.一些连续离散化方法 

很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 

9.数值分析算法 

如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 

10.图象处理算法 

赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。

二、数学软件的主要分类有哪些?各有什么特点? 

数学软件从功能上分类可以分为通用数学软件包和专业数学软件包,通用数学包功能比较完备,包括各种数学、数值计算、丰富的数学函数、特殊函数、绘图函数、用户图形届面交互功能,与其他软件和语言的接口及庞大的外挂函数库机制(工具箱)。 

常见的通用数学软件包包括Matlab和Mathematica和Maple,其中Matlab是一个高性能的科技计算软件,广泛应用于数学计算、建模、仿真和数据分析处理及工程作图,Mathematica 是数值和符号计算的代表性软件,Maple以符号运算、公式推导见长。 

专用数学包包括绘图软件类MathCAD,Tecplot,IDL,Surfer,Origin, SmartDraw,DSP2000),数值计算类:(Matcom, IDL, DataFit,S-Spline,Lindo,Lingo,O-Matrix,Scilab,Octave), 数值计算库(linpack/lapack/BLAS/GERMS/I***/CXML), 有限元计算类(ANSYS,MARC,PARSTRAN,FLUENT,FEMLAB,FlexPDE,Algor,COSMOS, ABAQUS,ADINA),计算化学类(Gaussian98,Spartan,ADF2000,ChemOffice),数理统计类(GAUSS,SPSS,SAS, Splus,statistica,minitab), 数学公式排版类(MathType,MikTeX,Scientific Workplace,Scientific Nootbook)。

三、关于数模竞赛的几本好书 

▲ 姜启源,《数学模型(第二版)》,高等教育出版社 

▲ 姜启源、谢金星、叶俊《数学建模(第三版)》,高等教育出版社 

▲ 萧树铁等,《数学实验》,高等教育出版社 

▲ 朱道元,《数学建模案例精选》,科学出版社 

▲ 雷功炎,《数学模型讲义》,北京大学出版社 

▲ 叶其孝等,《大学生数学建模竞赛辅导教材(一)~(四)》,湖南教育出版社 

▲ 江裕钊、辛培清,《数学模型与计算机模拟》,电子科技大学出版社 

▲ 杨启帆、边馥萍,《数学模型》,浙江大学出版社 

▲ 赵静等,《数学建模与数学实验》,高等教育出版社,施普林格出版社

本文由 周丰愉 授权 赛氪网 发表,并经赛氪网编辑。转载此文章须经作者同意,并请附上出处(赛氪网)及本页链接。原文链接https://www.saikr.com/a/52
收藏
分享
别默默的看了,快来和大家聊聊吧,登录后发表评论~ 登录 立即注册
打赏
周丰愉
打赏金额(金额:¥0)
给Ta留言
赏金已入袋,多谢!(*^__^*)
温馨提示

非常抱歉!本站不支持旧版本IE浏览器~~建议使用IE10/IE11/Chrome/Firefox/Safari等高级浏览器浏览。

温馨提示
温馨提示
帮助与反馈

热门问题

0
在线咨询